Name: $\qquad$ Date: $\qquad$
Quiz name: Chapter 13 Test Review - Fluids

1. All fluids are

2. 1 Pa is

| (A) | $1 \mathrm{~N} / \mathrm{m}$ |
| :--- | :--- |
| (B) | $1 \mathrm{~m} / \mathrm{N}$ |
| (C) | $1 \mathrm{~kg} /(\mathrm{m} \cdot \mathrm{s})$ |
| (D) | $1 \mathrm{~kg} /\left(\mathrm{m} \cdot \mathrm{s}^{2}\right)$ |
| (E) | $1 \mathrm{~N} / \mathrm{m} \cdot \mathrm{s}$ |

3. 

To obtain the absolute pressure from a guage pressure:

subtract atmospheric pressure
add atmospheric pressure
subtract 273
add 273
convert to $\mathrm{N} / \mathrm{m}^{3}$
4. The pressure exerted on the ground by a man is greatest when
he stands with both feet flat on the ground
he stands flat on one foot
he stands on the toes of one foot
(D) he lies down on the ground
all of the above yield the same pressure

The vessels shown below all contain water to the same height. Rank them according to the pressure exerted by the water at a point located at the bottom of each vessel, least to greatest.
(A) $1,2,3,4$
(B) $3,4,2,1$
(C) $4,3,2,1$
$2,3,4,1$
All pressures are the same
Same depth
means
same Pressure

The vessels shown below all contain water to the same height. Rank them according to the
6. contacting force for each flask has with the ground, greatest to least.


We are simply seeing which container weighs the most so the one with
1, 2, 3, 4
3, 4, 2, 1
the most water is the heaviest.

2, 3, 4, 1
(E) All pressures are the same
7. In a stationary homogeneous liquid
pressure is the same at all points
pressure depends on the direction
pressure is independent of any atmospheric pressure on the upper surface of the liquid
pressure is the same at all points at the same level
none of the above

Several cans of different sizes and shapes are all filled with the same liquid to the same depth. Which
8. statement is true?
(A) the weight of the liquid is the same for all cans
(B) the force of the liquid on the bottom of each can is the same
(C) the least pressure is at the bottom of the can with the largest bottom area
(D) the greatest pressure is at the bottom of the can with the largest bottom area
the pressure on the bottom of each can is the same

The diagram shows a U-tube with cross-sectional area A and partially filled with oil of density $\rho$. A solid cylinder, which fits the tube tightly but can slide without friction, is placed in the right arm. The
9. system is in equilibrium. The weight of the cylinder is:
(11i) ALpg
(B) $\mathrm{L}^{3} \mathrm{pg}$

(D) $A \rho(L-h) g$
(E) none of these

The density of water is $1.0 \mathrm{~g} / \mathrm{cm} 3$. The density of the oil in the left column of the U-tube shown below
10. is:
(A) $0.20 \mathrm{~g} / \mathrm{cm}^{3}$

$0.80 \mathrm{~g} / \mathrm{cm}^{3}$
(C) $1.0 \mathrm{~g} / \mathrm{cm}^{3}$
(D) $1.3 \mathrm{~g} / \mathrm{cm}^{3}$
(E) $5.0 \mathrm{~g} / \mathrm{cm}^{3}$

$$
\begin{aligned}
\text { oil } & \text { water } \\
m_{0} & =m_{w} \\
s_{0} V_{0} & =s_{w} V_{w} \\
\frac{V_{0}}{V_{w}} & =\frac{\rho_{w}}{\rho_{0}} \text { inversely proportional } \\
\text { So if } \frac{V_{0}}{V_{w}} & =\frac{10}{8} \\
\text { then } \frac{\rho_{0}}{p_{w}} & =\frac{8}{10}=\frac{0.8}{\text { that of water }} \text { times }
\end{aligned}
$$

A bucket resting on the floor of an elevator contains an incompressible fluid of density $\rho$. When the elevator has an upward acceleration of magnitude a the pressure difference between two points in a
11. fluid separated by a vertical distance $\Delta h$, is given by:


```
Accelerating upwards males
    You feel heqvier, so simply
    add the up ward acceleration to
    the existing gravitational
    accelerution.
```

A certain object floats in fluids of density

1. $0.9 \rho_{\circ}$
2. $\rho$
3. $1.1 \rho_{\mathrm{o}}$

In order to float, the
$F_{B}$ must be equal to $F_{g}$.
So the buoyant fork will
always be Fy
4. 

Which of the statements is true?
A the buoyant force of fluid $i$ is greater than the buoyant forces of the other two fluids
(B) the buoyant force of fluid 3 is greater than the buoyant forces of the other two fluids
the three fluids exert the same buoyant force
D the object displace the same volume of all three fluids
(E) none of these are true
13. Two identical blocks of ice float in water as shown. Then
(A) block A displaces a greater volume of water since the pressure acts on a smaller bottom area
(B) block B displaces a greater volume of water since the pressure is less on its bottom

the two blocks displace equal volumes of water since they have the same weight


D block A displaces a greater volume of water since its submerged end is lower in the water
block $B$ displaces a greater volume of water since its submerged end has a greater area

A block of ice at 0 C containing a piece of cork is floating on the surface of ice water in a beaker.
14. When the ice has melted the water level:
(A) is higher
(B) is lower
(A) is the same
No mass is added to
the system, so the pressure
will not change either.
depends on the initial ratio of water to ice
depends on the shape of the ice block
Consider the diagram shown. 6 different masses are suspended in 6 different fluids. Each fluid has the same volume and each mass has the same volume. Which of the following masses experiences
15. the largest buoyant force? If there is a tie, select all that apply.


Consider the diagram shown. 6 different masses are suspended in 6 different fluids. Each fluid has the same volume and each mass has the same volume. Which of the following masses experiences
16. the smallest buoyant force? If there is a tie, select all that apply.


An object hangs from a spring balance. The balance indicates 30 N in air and 20 N when the object is submerged in water. What does the balance indicate when the object is submersed in a liquid with a
17.


A fir wood board floats in fresh water with $60 \%$ of its volume under water. The density of the wood in
18. $\mathrm{g} / \mathrm{cm}^{3}$ is:

| (A) | 0.4 |
| :--- | :--- |
| (B) | 0.5 |
| (ic) | 0.6 |
| (D) | less than 0.4 |
| (E) | more than 0.6 |

A boat floating in fresh water displaces $16,000 \mathrm{~N}$ of water. How many Newtons of saltwater would it
19. displace if it floats in saltwater with density of $1.17 \mathrm{~g} / \mathrm{cm}^{3}$ ?
(A) 14,500
(B) $17,600 \quad$ The boat is still faating
(a) $16,000 \quad$ So $F_{B}$ still is $16,000 \mathrm{~N}$
(D) 284
(E) 234

A rock, which weighs 1400 N in air, has an apparent weight of 900 N when submerged in fresh water 20. $\left(998 \mathrm{~kg} / \mathrm{m}^{3}\right)$. The volume of the rock is:

$0.14 \mathrm{~m}^{3}$
B $0.60 \mathrm{~m}^{3}$
(C) $0.90 \mathrm{~m}^{3}$
$F_{B}=50 U N=P_{f} v_{5} g$
$500=(998) V_{5}(9.8)$
$V_{f}=0.051 \mathrm{~m}^{3}$
$9.2 \times 10^{-2} \mathrm{~m}^{3}$

A loaded ship passes from a lake (fresh water) to the ocean (saltwater). Saltwater is more dense than
21. fresh water and as a result the ship will:
ride higher in the water

$$
\begin{aligned}
& \text { It does not have to } \\
& \text { displace as mach fluid. }
\end{aligned}
$$

A student standardizes the concentration of a saltwater solution by slowly adding salt until an egg
22. will just float. The procedure is based on the assumption that:
(A) all eggs have the same volume

B all eggs have the same weight
(II) all eggs have the same density

D all eggs have the same shape
(E) the salt tends to neutralize the cholesterol in the egg

The apparent weight of a steel sphere immersed in various liquids is measured using a spring scale.
23. The greatest reading is obtained for that liquid:
(A.) having the smallest density $\rightarrow$ this will Minimize the buoyant force
(B) having the largest density
(C) subject to the greatest atmospheric pressure
(D) having the greatest volume
(E) in which the sphere was submerged deepest

The diagram shows a pipe of uniform cross section in which water is flowing. The directions of flow and the volume flow rates (in $\mathrm{cm}^{3} / \mathrm{s}$ ) are shown for various portions of the pipe. The direction of flow and the volume flow rate in the portion marked A are:

Hint: Recall from circuits that the amount of current coming into a node is the same as the current
24. coming out of the node!
A Down @ $3 \mathrm{~cm}^{3} / \mathrm{s}$
(B) $\mathrm{Up} @ 7 \mathrm{~cm}^{3} / \mathrm{s}$
(C) Down @ $9 \mathrm{~cm}^{3} / \mathrm{s}$
(D) Up@ $11 \mathrm{~cm}^{3} / \mathrm{s}$
Down @ $15 \mathrm{~cm}^{3} / \mathrm{s}$

25. An in-compressible liquid flows along the pipe as shown. The ratio of the speeds $v_{2} / v_{1}$ is:

26. Bernoulli's equation can be derived from the conservation of:

energy
mass
angular momentum
volume
pressure
27. Water flows through a constriction in a horizontal pipe. As it enters the constriction, the water's:


A large tank filled with water has two holes in the bottom, one with twice the radius of the other. In
28. steady flow the speed of water leaving the larger hole is the speed of the water leaving the smaller.
twice
four times
half
one-fourth
the same as

Water flows through a cylindrical pipe of varying cross section. The velocity is $3.0 \mathrm{~m} / \mathrm{s}$ at a point
29. where the pipe diameter is 1.0 cm . At a point where the pipe diameter is 3.0 cm , the velocity is:
(A) $9 \mathrm{~m} / \mathrm{s}$
(B)
(C)
(0)
(C)
(E)
(E)
30. The equation of continuity for fluid flow can be derived from the conservation of:
(A) energy
(Ci) flow rate
(D) volume
(E) pressure

Imagine holding two bricks under water. Brick A is just beneath the surface of the water, while brick $B$ is at a greater depth. The force needed to hold brick $B$ in place is $\qquad$ the force required to
31. hold brick $A$ in place


A 200-ton ship enters the lock of a canal. The fit between the sides of the lock and the ship is tight so that the weight of the water left in the lock after it closes is much less than 200 tons. Can the ship still 32. float if the quantity of water left in the lock is much less than the ship's weight?


Yes, as long as the water gets up to the ship's waterline.
No, the ship touches bottom because it weighs more than the water in the lock.

When a hole is made in the side of a container holding water, water flows out and follows a parabolic
33. trajectory. If the container is dropped in free fall, the water flow
(A) diminishes

$$
\begin{aligned}
& \text { This essentially turns } g=0 \text {, so } \\
& \text { no pressure exists }
\end{aligned}
$$

A container is filled with oil and fitted on both ends with pistons. The area of the left piston is 10 $\mathrm{mm}^{2}$; that of the right piston $10,000 \mathrm{~mm}^{2}$. What force must be exerted on the left piston to keep the $10,000-\mathrm{N}$ car on the right at the same height?
34.

HINT: The pressure must be the same on both sides.

| (Cb) | 10 N |
| :--- | :--- |
| (B) | 100 N |
| (C) | $10,000 \mathrm{~N}$ |
| (D) | 106 N |
| (E) | 108 N |

$$
\begin{aligned}
& P_{1}=P_{2} \\
& \frac{F_{1}}{A_{1}}=\frac{F_{2}}{A_{2}} \\
& \frac{F_{1}}{10}=\frac{10.600}{10,000} \quad F_{1}=10
\end{aligned}
$$



Two beakers are filled with fluid. One is filled with water. The other is filled with a mixture of oil (less dense than water) and water to the same level. Which beaker has the greatest pressure at a point on
35. the bottom of the beaker?
(A) The Water Beaker
(B) The Oil/Water Beaker
(C) Both the Same


Consider two identical glasses. One contains water. One contains a combination of ice and water.
36. The water level is the same in both glasses. Which weighs more?


The glass without ice cubes
The glass with ice cubes
The two weight the same
37. An in-compressible fluid is flowing through a pipe. At which point is the fluid traveling the fastest?

Same depth means same pressure.
Since glasses are identical, this would mean same weight. The

38. An in-compressible fluid flows through a pipe. Compare the pressure at points 1 and 2.


Consider a small, horizontal artery in which there is a constriction due to plaque. This constriction reduces the cross sectional area of the artery. The pressure in the
39. constricted region is $\qquad$ the pressure in the unconstricted region.

greater than
faster speeds $\rightarrow$ smaller pressure
less than

In a laboratory experiment, the amount of significant figures recorded for a measurement should be 40. based on
(A) Having at least 3 significant figures
(B) Knowing what the exact value should be
(ब.) The precision of the instrument used to make the measurement
(D) Lying

